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Abstract. We calculate at two-loop order in chiral perturbation theory the electromagnetic corrections to
the leading-order 2π exchange NN interaction proportional to g0

A and g2
A. The resulting 2πγ exchange po-

tential contains isospin-breaking components which reach up to about −2% of the corresponding isovector
2π exchange potential. With a value of only −17 keV at r = m−1

π = 1.4 fm the charge-independence break-
ing central potential obtained here is negligibly small in comparison to the one generated by the isoscalar
c3 contact vertex. Our calculation confirms that the largest long-range isospin-violating NN potentials
arise from the 2πγ exchange diagrams involving the large low-energy constants c4 ' −c3 ' 3.3GeV−1

representing the important ∆(1232) dynamics.

PACS. 12.20.Ds Specific calculations – 13.40.Ks Electromagnetic corrections to strong- and weak-
interaction processes – 21.30.Cb Nuclear forces in vacuum

1 Introduction and summary

Isospin-violation in the nuclear force is a subject of cur-
rent interest. Significant advances in the understanding of
nuclear isospin-violation have been made in the past years
by employing methods of effective field theory (in partic-
ular chiral perturbation theory). Van Kolck et al. [1] were
the first to calculate (in a manifestly gauge-invariant way)
the complete leading-order pion-photon exchange nucleon-
nucleon interaction. In addition, the charge-independence
and charge-symmetry breaking effects arising from the
pion mass difference mπ+ −mπ0 = 4.59MeV and the nu-
cleon mass difference Mn−Mp = 1.29MeV on the (leading
order) two-pion exchange NN potential have been worked
out in refs. [2,3]. Epelbaum and Meißner [4] have con-
tinued this line of approach by deriving the subleading
isospin-breaking 2π exchange NN potentials and classi-
fying the relevant isospin-breaking four-nucleon contact
terms. Some next–to–leading-order corrections to the πγ
exchange potential (i.e. those proportional to the large
isovector magnetic moment κv = 4.7) as well as effects
from virtual ∆(1232)-isobar excitation on the πγ exchange
interaction have been calculated in ref. [5]. All these long-
range (pion-induced) isospin-breakingNN potentials have
turned out to be rather weak. Typically, their values at a
nucleon distance of r = m−1

π = 1.4 fm lie below 50 keV in
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magnitude (see herefore figs. 7 and 8 in ref. [4] and tables I
and II in ref. [5]).

In a recent work [6] we have calculated the electromag-
netic (i.e. one-photon exchange) corrections to the domi-
nant two-pion exchange NN interaction. The latter comes
in form of a strongly attractive isoscalar central potential
and it is generated by a one-loop triangle diagram involv-
ing the isoscalar ππNN contact vertex proportional to the
large low-energy constant c3 ' −3.3GeV [7]. The dynam-
ics behind this large value of c3 is (mainly) the excitation
of the low-lying ∆(1232)-resonance. It has been found that
this particular class of two-loop 2πγ exchange diagrams
(proportional to c3) leads to sizable charge-independence
and charge-symmetry breaking central potentials which
amount to 0.3MeV at r = m−1

π [6]. The effect of the other
equally strong low-energy constant c4 ' 3.4GeV [7] en-
tering in an isovector spin-flip ππNN contact vertex has
also been studied. Somewhat weaker charge-independence
breaking spin-spin and tensor potentials with values of
−0.11MeV and 0.09MeV at r = m−1

π have been found.
Although they arise from contact vertices at next-to-
leading order in the small momentum expansion these
2πγ exchange potentials (proportional to c3 and c4) are
the largest long-range isospin-violating NN potentials ob-
tained so far. For a further confirmation of this remarkable
finding one should also evaluate and quantify the isospin-
violating 2πγ exchange interaction at leading order in the
chiral expansion. This is the purpose of the present pa-
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per. We will restrict ourselves here to the classes of two-
loop diagrams which scale as g0

A and g2
A with the nucleon

axial vector coupling constant gA = gπNfπ/MN ' 1.3
(choosing the recent value gπN = 13.15 [8] of the pion-
nucleon coupling constant). The pertinent spectral func-
tions (or imaginary parts) are calculated analytically for
each contributing diagram and these expressions are then
used to compute the NN potential in coordinate space.
As a largest isospin-violating component we find a charge-
independence breaking central potential (∼ τ 3

1 τ
3
2 ) of size

−17 keV at r = m−1
π . Our results therefore confirm that

the 2πγ exchange interaction follows closely the pattern
observed for the chiral 2π exchange NN interaction in
refs. [7,9]. The next–to–leading-order contributions domi-
nate over the leading-order ones due to the presence of the
large low-energy constants c4 ' −c3 ' 3.3GeV−1 repre-
senting the important ∆(1232) dynamics.

Our paper is organized as follows. In sect. 2 we present
first analytical expressions for the spectral functions of
the two-loop 2πγ exchange diagrams proportional to g0

A
and g2

A. These results are then used in sect. 3 to evaluate
numerically the corresponding central NN potentials in
coordinate space which include the isospin-violating com-
ponents of interest. We present also a rough estimate for
the (remaining) class of diagrams proportional to g4

A.

2 Two-loop spectral functions

We are interested in the long-range part of the coordi-
nate space potential generated by certain two-loop 2πγ
exchange diagrams. For that purpose it is sufficient to
know the spectral functions or imaginary parts of these
two-loop diagrams. Making use of (perturbative) unitarity
in the form of the Cutkosky cutting rule we can calculate
the two-loop spectral functions as integrals of the (sub-
threshold) N̄N → ππγ → N̄N transition amplitudes over
the Lorentz-invariant 2πγ three-particle phase space. In
the (conveniently chosen) center-of-mass frame this leads
to two angular integrations and two integrals over the
(on-shell) pion energies. Due to the heavy nucleon limit
(MN →∞) and the masslessness of the photon (mγ = 0)
several simplifications occur and therefore most of these
integrations can actually be performed in closed analyt-
ical form. For a concise presentation of our results it is
furthermore advantageous to scale out all common (di-
mensionful) parameters from the spectral function

ImT (iµ) =
αm2

π

π2(4fπ)4
S

(
µ

mπ

)
, (1)

and to work with the dimensionless variable u = µ/mπ

where, µ ≥ 2mπ denotes the ππγ invariant mass. Here,
α = 1/137.036 is the electromagnetic fine-structure con-
stant, mπ = 139.57MeV denotes the (charged) pion mass
and fπ = 92.4MeV stands for the weak pion decay con-
stant.

Fig. 1. Electromagnetic corrections to the 2π exchange bubble
diagram proportional to g0

A. Diagrams turned upside-down and
diagrams with the role of both nucleons interchanged are not
shown. The spectral function ImT (iµ) is calculated by cutting
the intermediate ππγ three-particle state.

2.1 Diagrams proportional to g0
A

We add to the 2π exchange bubble diagram (scaling as
g0
A) a photon line which runs from one side to the other.
There are five positions for the photon to start at the
left-hand side and five positions to arrive at the right-
hand side. These 25 diagrams (each with a combinatoric
factor of 1/2) are obtained from the eight representative
ones shown in fig. 1 by adding horizontally and/or ver-
tically reflected partners1. We are working throughout in
the Feynman gauge, where the photon propagator is pro-
portional to gµν . The Feynman rules for the various effec-
tive chiral vertices can be found in appendix A of ref. [10].
Without going into further technical details, related to
isospin factors and solving elementary integrals, we enu-
merate now the contributions of the eight representative
diagrams (A)–(H) shown in fig. 1 to the dimensionless
spectral S(u). We find for u ≥ 2:

S(u)(A) = (~τ1 · ~τ2 + 3τ3
1 τ

3
2 )

{
− u2 + 2

8u

√
u2 − 4

+

(
1− 1

u2

)
ln

u+
√
u2 − 4

2

}
, (2)

where ~τ1,2 are the usual isospin operators with third com-
ponents τ3

1,2.

S(u)(B)=(~τ1 ·~τ2+τ3
1 τ

3
2 )

{
2−6u2+5u4−u6

3u4
ln

u+
√
u2−4

2

+
6−u2+u4

36u3

√
u2−4+

4

3u
(u2−4)

∮ u/2

1

dx
y

u−2x

}
, (3)

1 Diagram (F) still has to be duplicated by another one,
where the photon emanates from the lower pion line.
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with the abbreviation y =
√
x2 − 1.

S(u)(C) = τ3
1 τ

3
2

{
68u2 − 12− 23u4

36u3

√
u2 − 4

+
5u6 − 26u4 + 34u2 − 4

3u4

× ln
u+

√
u2 − 4

2
+

2

3u2
(6u2 − 8− u4)

×
∮ u/2

1

dx

u− 2x
ln

u(x+ y)− 1

u(x− y)− 1

}
, (4)

S(u)(D) = (~τ1 · ~τ2 + 3τ3
1 τ

3
2 )

{
3

16u
(u2 − 2)

√
u2 − 4

+

(
1− u2

4
− 3

2u2

)
ln

u+
√
u2 − 4

2

}
. (5)

The contribution of diagram (E) vanishes, S(u)(E) = 0,
because the isospin factor is equal to zero.

S(u)(F)=(~τ1 ·~τ2−τ3
1 τ

3
2 )

{
53u4+874u2−8

144u3

√
u2−4

+
21u6−296u4−234u2−8

36u4
ln

u+
√
u2−4

2

+

∮ u/2

1

dx

u−2x

[
8y

9u
(u2−28)+

(
8− 2u2

3

)
ln

u−x+y

u−x−y

]}
, (6)

S(u)(G+H)=(~τ1 ·~τ2−τ3
1 τ

3
2 )

{(
1

u2
− 1

3

)
ln

u+
√
u2−4

2

+
50−11u2

72u

√
u2−4+

4

3u
(u2−4)

∮ u/2

1

dx
y

u−2x

}
. (7)

The contribution from diagram (G) together with the ir-
reducible part of diagram (H) is proportional to the dif-
ference of their isospin factors on the left nucleon line,
[1 + τ3

1 , τ
c
1 ]ε

abc = 2i(τa1 δ
b3 − τ b1δ

a3). The “encircled” in-
tegrals appearing in eqs. (3), (4), (6), (7) symbolize the
following regularization prescription:

∮ u/2

1

dx
f(x)

u− 2x
=

∫ u/2

1

dx
f(x)− f(u/2)

u− 2x
. (8)

This regularization prescription eliminates from some con-
tributions to the spectral function S(u) an infrared singu-
larity due to the emission of soft photons (N̄N → ππγsoft).
The singular factor (u − 2x)−1 stems (mostly) from a
pion propagator. The regularization prescription defined
in eq. (8) is equivalent to the familiar “plus”-prescription
employed commonly for parton splitting functions in or-
der to eliminate there an analogous infrared singularity
due to soft-gluon radiation [11]. It has also been used in
our previous works [6]. It would, of course, by desirable to
extend the present calculational framework such that the
overall infrared finiteness could be demonstrated in detail.
It is then conceivable that additional contributions be-
yond the “plus”-regularization prescription emerge which
might quantitatively modify the numerical results for the
isospin-violating NN potentials. We note as an aside that

the non-elementary integrals (
∫ u/2
1

dx . . . ) in eqs. (4), (6)
could be solved in terms of dilogarithms, whereas

∮ u/2

1

dx
4
√
x2 − 1

u− 2x
=
√

u2−4 ln
u+ 2

e
−u ln

u+
√
u2 − 4

2
,

(9)
is still expressible in terms of elementary functions. Fi-
nally, it is interesting to observe that no charge-symmetry
breaking terms ∼ τ 3

1 + τ3
2 are generated by the 2πγ ex-

change diagrams in fig. 1.

2.2 Diagrams proportional to g2
A

Next, we turn to the class of diagrams proportional to g2
A.

We add to the 2π exchange triangle diagram a photon line
which runs from one side to the other. There are five po-
sitions for the photon to start on the left-hand side and
now seven positions to arrive at the right-hand side. Leav-
ing out those four diagrams which vanish in the Feynman
gauge (with photon propagator proportional to gµν) we
get the sixteen representative diagrams shown in fig. 2.
Except for diagram (I) these are to be understood as be-
ing duplicated by horizontally reflected partners. A fur-
ther doubling of the number of diagrams comes from in-
terchanging the role of both nucleons. Obviously, diagram
(II) vanishes in the Feynman gauge, S(u)(II) = 0, (since

(I) (II) (III) (IV)

(V) (VI) (VII) (VIII)

(IX) (X) (XI) (XII)

(XIII) (XIV) (XV) (XVI)

Fig. 2. Electromagnetic corrections to the 2π exchange trian-
gle diagram proportional to g2

A. Diagrams with the contact ver-
tex at the right nucleon line and diagrams turned upside-down
are not shown. The spectral function ImT (iµ) is calculated by
cutting the intermediate ππγ three-particle state.
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g0i = 0) and the remaining contributions to the dimen-
sionless spectral function S(u) read for u ≥ 2:

S(u)(I) = g2
A(~τ1 · ~τ2 + τ3

1 τ
3
2 − τ3

1 − τ3
2 )

{(
2− 2

u2

)

× ln
u+

√
u2 − 4

2
− u2 + 2

4u

√
u2 − 4

+

∫∫
dω1 dω2(u

2 + 2− 4uω1)
arccos(−k̂1 · k̂2)

|~k1 × ~k2|

}
. (10)

Here, (ω1,~k1) and (ω2,~k2) denote the four-momenta
of the two on-shell pions in units of the pion mass with

|~kj | =
√

ω2
j − 1. A circumflex on a symbol denotes the

corresponding unit vector. The negative scalar product of
the two pion-momenta is given by the quadratic polyno-

mial: −~k1 ·~k2 = u(ω1 +ω2)−ω1ω2−1−u2/2. The double
integral in eq. (10) extends over that region inside the
square 1 ≤ ω1,2 ≤ u/2 where the radicand in the denomi-

nator |~k1×~k2|2 = 2uω1ω2(ω1+ω2)− (u2+1)(ω1+ω2)
2−

u2ω1ω2 + (u3 + 2u)(ω1 + ω2)− u2 − u4/4 is positive.

S(u)(III) = g2
A(~τ1 · ~τ2 + 3τ3

1 τ
3
2 )

{
11u2 − 6

16u

√
u2 − 4

+

(
3− 5u2

4
− 3

2u2

)
ln

u+
√
u2 − 4

2

}
, (11)

S(u)(IV) = g2
A(~τ1 · ~τ2 + τ3

1 τ
3
2 )

{
11u2 − 6

8u

√
u2 − 4

+

(
6− 5u2

2
− 3

u2

)
ln

u+
√
u2 − 4

2

}
, (12)

S(u)(V) = g2
A(~τ1 · ~τ2+τ3

1 τ
3
2 )

{
2

3u4
(19u4−5u6−6u2−2)

× ln
u+
√
u2−4

2
+
17u4−35u2−6

18u3

√
u2−4

+
8

3u
(5u2 − 8)

∮ u/2

1

dx
y

u− 2x

}
, (13)

S(u)(VI) = g2
Aτ

3
1 τ

3
2

{
34− u2

4u

√
u2 − 4

+

(
34

u2
+

6

u2 − 1
+ u2 − 22

)
ln

u+
√
u2 − 4

2

+
8

u

∫ u/2

1

dx
ux− 2

y2
ln

u(x+ y)− 1

u(x− y)− 1

}
, (14)

S(u)(VII) = g2
Aτ

3
1 τ

3
2

{
6− 115u2 − 2u4

9u3

√
u2 − 4

+
4

3u4
(2 + 4u2 − 11u4 + 8u6) ln

u+
√
u2 − 4

2

+
4

u2

∫ u/2

1

dx

y2
(6u− u3 − 4x− u2x)

× ln
u(x+ y)− 1

u(x− y)− 1
+

4

3u2
(18u2 − 16− 5u4)

×
∮ u/2

1

dx

u− 2x
ln

u(x+ y)− 1

u(x− y)− 1

}
, (15)

S(u)(VIII) = g2
A(τ

3
1 + τ3

2 − τ3
1 τ

3
2 − ~τ1 · ~τ2)

{[
3

2u2

−3

2
− 5u2

4
+

3

2(u2 − 1)

]
ln

u+
√
u2 − 4

2

+
3

16u
(7u2 + 2)

√
u2 − 4 +

∫ u/2

1

dx

y2

×
(
3x− u− 2

u

)
ln

u(x+ y)− 1

u(x− y)− 1

}
, (16)

S(u)(IX) = g2
A(τ

3
1 + τ3

2 + 2τ3
1 τ

3
2 )

{(
2− 2

u2

)

× ln
u+

√
u2 − 4

2
− u2 + 2

4u

√
u2 − 4

+

∫∫
dω1 dω2

[
4u(ω1 + ω2)

−2u2 − 4
]arccos(−k̂1 · k̂3)

|~k1 × ~k2|

}
, (17)

with ~k3 = −~k1 − ~k2 the photon momentum of magnitude

|~k3| = u− ω1 − ω2 and the negative scalar product given

by the quadratic polynomial −~k1 · ~k3 = (ω1 + ω2)(ω1 −
u) + u2/2.

S(u)(X) = g2
A(τ

3
1 + τ3

2 + τ3
1 τ

3
2 + ~τ1 · ~τ2)

×
{
4− 18u2 + 238u4 + 75u6

36u4
ln

u+
√
u2 − 4

2

+
4 + 4u2 − 535u4

144u3

√
u2 − 4 +

∮ u/2

1

dx

u− 2x

×
[
4y

9u
(17u2 − 8)− 5u2

3
ln

u− x+ y

u− x− y

]}
, (18)

S(u)(XI) = g2
A(τ

3
1 +τ3

2 +3τ3
1 τ

3
2−~τ1 · ~τ2)

{∮ u/2

1

dx

u− 2x

×
[
4y

9u
(8−17u2)+

5u2

3
ln

u−x+y

u−x−y

]
+
173u4−29u2−2

72u3

×
√

u2 − 4 +

∫ u/2

1

dx

y2

(
u− 3x+

2

u

)
ln

u(x+ y)− 1

u(x− y)− 1

−
[
5u2

6
+
46

9
+

1

u2
+

1

9u4
+

3

2(u2−1)

]
ln

u+
√
u2−4

2

}
, (19)

S(u)(XII) = g2
A(2 + τ3

1 + τ3
2 + τ3

1 τ
3
2 − ~τ1 · ~τ2)

×
{
− 8 + 54u2 + 152u4 + 105u6

72u4

× ln
u+

√
u2 − 4

2
+

611u4 − 98u2 − 8

288u3

√
u2 − 4

+

∮ u/2

1

dx

u−2x

[
4y

9u
(8−17u2)+

5u2

3
ln

u−x+y

u−x−y

]}
, (20)
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Table 1. The isovector 2π exchange central potential W̃
(2π)
C

(r) proportional to g0
A and electromagnetic corrections to it as a

function of the nucleon distance r. The values in the third row correspond to the isospin-violating central potential Ṽ
(cib)
C

(r).

r [fm] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

W̃
(2π)
C

[MeV] 0.637 0.353 0.205 0.124 0.077 0.049 0.032 0.022 0.015 0.010

W̃
(0)
C

[keV] −8.06 −3.89 −1.97 −1.04 −0.570 −0.320 −0.184 −0.108 −0.064 −0.038

Ṽ
(cib)
C

[keV] −2.94 −1.65 −0.975 −0.596 −0.376 −0.243 −0.161 −0.108 −0.074 −0.052

Table 2. The isovector 2π exchange central potential W̃
(2π)
C

(r) proportional to g2
A and electromagnetic corrections to it as a

function of the nucleon distance r. The values in the fourth and fifth row correspond to the isospin-violating central potentials

Ṽ
(cib)
C

(r) and Ṽ
(csb)
C

(r).

r [fm] 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

W̃
(2π)
C

[MeV] 11.96 6.75 3.99 2.45 1.56 1.01 0.677 0.460 0.319 0.224

Ṽ
(0)
C

[keV] 25.44 14.19 8.30 5.04 3.16 2.04 1.34 0.903 0.618 0.429

W̃
(0)
C

[keV] −49.70 −20.34 −8.33 −3.24 −1.07 −0.156 0.201 0.313 0.322 0.290

Ṽ
(cib)
C

[keV] −232.9 −127.4 −73.1 −43.6 −26.9 −17.1 −11.1 −7.38 −4.99 −3.43

Ṽ
(csb)
C

[keV] −25.44 −14.19 −8.30 −5.04 −3.16 −2.04 −1.34 −0.903 −0.618 −0.429

S(u)(XIII) = g2
A(2 + τ3

1 + τ3
2 − τ3

1 τ
3
2 + ~τ1 · ~τ2)

×
{
8+54u2+152u4+105u6

72u4
ln

u+
√
u2−4

2

+
8 + 98u2 − 611u4

288u3

√
u2 − 4 +

∮ u/2

1

dx

u− 2x

×
[
4y

9u
(17u2 − 8)− 5u2

3
ln

u− x+ y

u− x− y

]}
, (21)

S(u)(XIV) = g2
A(~τ1 · ~τ2 − 1)

π2

3u
(u3 − 6u+ 4), (22)

S(u)(XV+XVI) = g2
A(τ

3
1 τ

3
2 − ~τ1 · ~τ2)

{(
2

u2
− 50

3

)

× ln
u+

√
u2 − 4

2
+

50 + 133u2

36u

√
u2 − 4

+
8

3u
(8− 5u2)

∮ u/2

1

dx
y

u− 2x

+

∫∫
dω1dω2

[
4u(ω1+ω2)−2u2−4

]arccos(−̂k1 ·k̂3)

|~k1×~k2|

}
.

(23)

The “encircled” integrals appearing in
eqs. (13), (15), (18)–(21), (23) involve again the regu-
larization prescription defined in eq. (8). We have also
checked gauge invariance. The (total) spectral function
S(u) stays ξ-independent when adding a longitudinal
part to the photon propagator: gµν → gµν + ξkµkν .

3 2πγ exchange potential in coordinate space

Now we are in the position to present numerical results.
For orientation let us first recall the isovector central po-

tential (∼ ~τ1 · ~τ2) generated by the leading-order 2π ex-
change bubble and triangle diagrams. As a function of the
nucleon distance r, it reads [9]

W̃
(2π)
C (r) =

2πmπ

(4πfπr)4

{
[1 + 2g2

A(5 + 2z2)]K1(2z)

+z(1 + 10g2
A)K0(2z)

}
, (24)

with z = mπr and K0,1(2z) two modified Bessel functions.
The numerical values in the first rows of tables 1 and 2
display the magnitude and r-dependence of this weakly
repulsive 2π exchange potential separated into its contri-
butions proportional to g0

A and g2
A. One observes that the

g2
A-component is more than a factor of 20 larger than the
other one. This feature comes from the different combina-
toric factors and the different large-r asymptotics of the
contributions from the bubble and triangle diagram.

With the help of the spectral function ImT (iµ) or S(u)
the 2πγ exchange central potential in coordinate space

Ṽ
(2πγ)
C (r) can be easily calculated via a modified Laplace

transformation:

Ṽ
(2πγ)
C (r) = − 1

2π2r

∫
∞

2mπ

dµµe−µr ImT (iµ)

= Ṽ
(0)
C (r) + ~τ1 · ~τ2 W̃

(0)
C (r)

+τ3
1 τ

3
2 Ṽ

(cib)
C (r) + (τ3

1 + τ3
2 ) Ṽ

(csb)
C (r), (25)

where we have given in the second and third lines of
eq. (25) the decomposition into isospin-conserving (0),
charge-independence breaking (cib) and charge-symmetry
breaking (csb) parts. The numbers in the second and
third row of table 1 and the second to fifth row of
table 2 display the dropping of the 2πγ exchange central

potentials V
(0)
C (r), W̃

(0)
C (r), Ṽ

(cib)
C (r) and Ṽ

(csb)
C (r) with
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the nucleon distance r in the region 0.9 fm ≤ r ≤ 1.8 fm.
When focusing on the isospin-violating components
one observes a strong suppression of the contribution
from the class of diagrams scaling as g0

A, similar to the

original 2π exchange potential W̃
(2π)
C (r). As the largest

isospin-violating component one identifies the charge-
independence breaking potential coming from the class of
diagrams proportional to g2

A, with a value of −17 keV at
r = m−1

π = 1.4 fm. This is almost a factor of 20 smaller
than the one generated by the isoscalar ππNN contact
vertex proportional to c3 = −3.3GeV−1 which had a
strength of 303 keV [6] at r = m−1

π . It is also instructive
to compare the isospin-violating 2πγ exchange potentials
with the isospin-conserving 2π exchange potential. Their
maximal relative ratio of about 1.7% is consistent with
the usual rule of thumb estimate, namely, α/π ' 1/430
times a numerical factor. In the present case this numeri-
cal factor is not just 1 but of the order 7, due to the large
number of contributing diagrams. From that point of view
the relative smallness of the leading-order 2πγ exchange
potential is not surprising. The electromagnetic (one-
photon exchange) corrections follow closely the pattern
observed for the chiral 2π exchange NN potential [9,7].
The next–to–leading-order contributions dominate con-
siderably over the leading-order ones due to presence of
the large low-energy constants c4 ' −c3 ' 3.3GeV−1 [7]
representing the important ∆(1232) dynamics.

At leading order there is also the class of 2πγ ex-
change diagrams scaling as g4

A with the axial vector
coupling constant gA = gπNfπ/MN ' 1.3. For some
(out of these 7 · 7 · 2 = 98) diagrams with four nucleon
propagators the presently used method to calculate the
spectral functions as a three-body phase-space integral
does not properly work anymore in the heavy nucleon
limit MN → ∞. The reason for this failure is that
in some cases the two-loop spectral function (in the
limit MN → ∞) starts (discontinuously) with a non-
vanishing value at the threshold µ = 2mπ. As discussed
in the appendix of ref. [12] a µ-dependent spectral
function with such a behavior cannot be represented
by a regular three-body phase-space integral. In view
of the expected calculational complexity we restrict
ourselves here to a crude estimate of the isospin-violating
parts ∼ g4

A. The leading-order isovector central poten-

tial W̃
(2π)
C (r) proportional to g4

A has a value of −4.40MeV

at r = 1.4 fm (see herefore eq. (42) in ref. [9]). Allow-
ing for a relative size of the electromagnetic correction
of −1.5%2 one estimates the possible isospin-violating
component to about 66 keV. This is still small compared
to the 303 keV [6] from the isoscalar c3 contact vertex.
Moreover, the leading-order isoscalar spin-spin and ten-

sor potentials Ṽ
(2π)
S,T (r) proportional to g4

A have values of

2.30MeV and −2.23MeV at r = 1.4 fm (see eqs. (44), (41)
in ref. [9]). With the above rule of estimation this gives
isospin-violating spin-spin and tensor potentials of magni-
tude 35 keV, again small compared to the effects from the
c4 contact vertex obtained in ref. [6].

Altogether, our explicit calculation of the leading-
order 2πγ exchange diagrams proportional to g0

A and
g2
A together with the rule of thumb estimate of the g4

A-
contributions confirms that the largest long-range isospin-
violating NN potentials are the ones generated by the c3,4

contact vertices representing the important ∆(1232) dy-
namics. In order to test their phenomenological relevance
these should be included into future NN phase shift anal-
yses and few-body calculations.

References

1. U. van Kolck, M.C.M. Rentmeester, J.L. Friar, T. Gold-
man, J.J.de Swart, Phys. Rev. Lett. 80, 4386 (1998).

2. J.L. Friar, U. van Kolck, Phys. Rev. C 60, 034006 (1999).
3. J.L. Friar, U. van Kolck, G.L. Payne, S.A. Coon, Phys.

Rev. C 68, 024003 (2003).
4. E. Epelbaum, Ulf-G. Meißner, Phys. Rev. C 72, 044001

(2005).
5. N. Kaiser, Phys. Rev. C 73, 044001 (2006).
6. N. Kaiser, Phys. Rev. C 73, 064006 (2006); 74, 067001

(2006).
7. E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) and

references therein.
8. R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, R.L. Workman,

Phys. Rev. C 74, 045205 (2006).
9. N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625,

758 (1998).
10. V. Bernard, N. Kaiser, Ulf-G. Meißner, Int. J. Mod. Phys.

E 4, 193 (1995).
11. M.E. Peskin, D.V. Schroeder, Quantum Field Theory

(Addison-Wesley Publishing Company, 1995) Chapt. 17.5.
12. N. Kaiser, Phys. Rev. C 62, 024001 (2000).

2 In the case of the dominant c3-terms [6] the relative size of
the electromagnetic correction has been −1.2%.


